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The model introduced in Part I of the present study is extended to take into account a #owing
#uid, a mean radial pressure and initial pre-stress in circular cylindrical shells. The axial #ow
can be external, internal or annular and is described by the potential theory for inviscid and
incompressible #uid. The computer program DIVA has been developed. It takes into account
all the following complicating e!ects on the vibrations of circular cylindrical shells: (i) nonuni-
form boundary conditions around the shell edges including elastic boundary conditions; (ii)
#uid}structure interaction including both #owing and quiescent #uids; (iii) internal, external
and annular #uids; (iv) e!ect of a mean radial pressure and initial pre-stress; (v) elastic bed of
partial extension in circumferential and longitudinal directions; (vi) intermediate constraints;
(vii) added masses. It can be considered the most complete computer program speci"cally
dedicated to dynamics of circular cylindrical shells. The FluK gge theory of shells is used to
describe the shell deformations. The system has been proved to be conservative for any
combination of boundary conditions with restrained displacement at the shell ends. Numerical
results show that shells clamped at the upstream end and simply supported at the downstream
end have a larger critical velocity than simply supported shells, solving the paradox of HoraH c\ ek
and Zolotarev. ( 2002 Academic Press
1. INTRODUCTION

SHELLS CONTAINING OR IMMERSED IN FLOWING FLUIDS are widely used in engineering applica-
tions, where they are subjected to excitations of di!erent kinds, including #ow excitations.
Usually, these shells are made as thin as possible for weight and cost economy; therefore,
their response to such excitations is of great interest.

All previous studies on the dynamics of shells containing or immersed in axial #ow
assumed uniform boundary conditions around the edges. One of the "rst modern studies on
vibrations of circular cylindrical shells containing #owing #uid is due to Niordson (1953).
PamKdoussis & Denise (1972) considered both clamped and cantilevered shells subjected to
axial #ow and used a travelling wave-type solution by satisfying the pertinent boundary
conditions, along with a separation of variables method to solve the boundary value
problem for the #uid}structure interaction. Weaver & Unny (1973), on the other hand,
investigated the stability of simply supported shells by means of the Fourier transform
method to solve the #uid}structure interaction. Matsuzaki & Fung (1977) included the
e!ect of viscous structural damping and Mizoguchi & Komori (1978) considered a com-
pressible #ow. HoraH c\ ek & Zolotarev (1984) studied the e!ect of di!erent boundary
0889}9746/02/010031#21 $35.00/0 ( 2002 Academic Press
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conditions at the shell ends. In particular, they found the surprising result that vibrations of
shells conveying #ow, simply supported at the upstream end and clamped at the down-
stream end, are not conservative; moreover, if the boundary conditions are reversed, the
shell is unstable for an arbitrarily small #uid velocity. HoraH c\ ek & Zolotarev (1991) also
studied the acoustic}structural coupling of vibrating shells with or in #ow. Selmane & Lakis
(1997a) investigated free vibrations of open and closed circular shells with #uid #ow by
using a hybrid, "nite element method. In these papers, the shell stability as well as the linear
dependence of the natural frequencies of the system on the #ow velocity have been
investigated.

In a subsequent study, Selmane & Lakis (1997b) considered the nonlinear vibrations of
open and closed circular cylindrical shells with #uid #ow by using a hybrid, "nite element
method and the nonlinear Sanders-Koiter shell theory. Amabili et al. (1999, 2000) per-
formed a complete study of the nonlinear stability and forced response of simply supported
circular cylindrical shells with #ow by using Donnell's nonlinear shallow-shell theory. In
particular, they have shown for the "rst time that the stability of a shell conveying #uid
predicted by linear theory can be largely nonconservative and that the stability limit must
be calculated by using a nonlinear shell theory.

Vibrations of circular cylindrical shells in unbounded and annular #ow have also been
deeply investigated. Dowell & Widnall (1966) obtained the aerodynamic forces on an
oscillating cylindrical shell in potential, unbounded axial #ow by using the Fourier trans-
form method. PamKdoussis et al. (1984, 1991, 1992) studied coaxial cylindrical shells in
annular #ow, and for both internal and annular #ows the analysis was further extended to
deal with a viscous #ow (PamKdoussis et al. 1985). Although viscous e!ects can be extremely
important for annular #ows, it was shown that for internal #ow they are much less so, which
is of particular importance in the present study where the #ow is assumed to be inviscid.
Other studies on shells in viscous annular #ow are due to El Chebair et al. (1990) and
Nguyen et al. (1994). Additional results for inviscid annular #ow were obtained by HoraH c\ ek
(1993). Experimental results are given by El Chebair et al. (1989) and Nguyen et al. (1993).
Shells in supersonic #ow are not considered in this brief review. No studies are available for
circular cylindrical shells with nonuniform boundary conditions around the edge coupled
to #uid #ow.

In the present study, the model introduced in Part I (Amabili & Garziera 2000) is
extended to take into account a #owing #uid, di!erent constraints at the shell edges, a mean
radial pressure and initial pre-stress in the shell. The axial #ow can be external, internal or
annular and is described by the potential theory for inviscid and incompressible #uid. The
computer program DIVA has been developed. It takes into account all the following
complicating e!ects on the vibrations of circular cylindrical shells: (i) nonuniform boundary
conditions around the shell edges including elastic boundary conditions; (ii) #uid}structure
interaction including both #owing and quiescent #uids; (iii) internal, external and annular
#uids; (iv) e!ect of a mean radial pressure and initial pre-stress; (v) elastic bed of partial
extent in the circumferential and longitudinal directions; (vi) intermediate constraints; (vii)
added masses. It can be considered the most complete computer program speci"cally
dedicated to the dynamics of circular cylindrical shells. The FluK gge theory of shells is used to
describe the shell deformations. The system has been proved to be conservative for any
combination of boundary conditions with restrained displacement at the shell ends.

Thus, the present study solves the paradox obtained by HoraH c\ ek & Zolotarev (1984), i.e.,
that shells clamped at the upstream end and simply supported at the downstream end are
unstable for an arbitrarily small #uid velocity. In particular, it has been shown that these
shells have a larger critical velocity than simply supported shells, as expected. The paradox
of HoraH c\ ek and Zolotarev is probably due to some kind of numerical error in the
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eigenvalues evaluation.- For this reason, the program developed here, although optimized
for speed, has a very high numerical accuracy.

2. SHELL}FLOW INTERACTION

A cylindrical coordinate system (x, r, h) is introduced, with the origin at one shell end. The
displacement of the shell mean surface is denoted by u, v, w in axial, circumferential and
radial directions, respectively (see Figure 1). The shell has radius R, length ¸ and thickness
h. The #uid}structure interaction is described by linear potential #ow theory. The shell is
considered either immersed in annular #uid #ow, con"ned by an internal or external rigid
cylinder of radius R

1
, or conveying incompressible #ow. The case of an unbounded external

#uid domain in the radial direction is obtained as a limiting case of the annular #ow for
R

1
PR. The cases with R

1
(R (internal annular #ow) and R

1
P0 (internal #ow) are also

described by the present model. The #uid is assumed to be inviscid, and the #ow to be
isentropic and irrotational. Actually, for narrow annular gaps between the shell and the
external rigid cylinder, the e!ects of viscous forces on stability can be signi"cant, as found
by PamKdoussis et al. (1985, 1991). The irrotationality property is the condition for the
existence of a scalar potential function W from which the velocity may be written as

v"$W. (1)

The potential W consists of two components: one due to the mean #ow associated with the
undisturbed #ow velocity; in the axial direction, and the unsteady perturbation potential
U associated with shell motion. Thus,

W";x#U. (2)

The potential of the perturbation velocity satis"es the Laplace equation

+ 2U"

L2U
Lx2

#

L2U
Lr2

#

1

r

LU

Lr
#

1

r2
L2U
Lh2

"0. (3)
-The same conclusion has been reached, in a di!erent manner, by Misra et al. (2001) and Wong (2000).

Figure 1. Schematic of the shell with an annular #ow. The coordinate system and shell displacements are given.
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The perturbed pressure P may be related to the velocity potential by Bernoulli's equation
for unsteady #uid #ow,

LU

Lt
#1

2
<2#

P

o
F

"

P
S

o
F

, (4)

where <2"$W )$W, P
S

is the stagnation pressure and o
F

is the #uid mass density. The
pressure P in the #uid domain can be written as

P"PM #p, (5)

where PM is the mean pressure and p is the perturbation pressure, assumed positive outwards
as w. For small perturbations,<2:;2#2;(LU/Lx), and equation (5) gives the stagnation
pressure P

S
"PM #1

2
o
F
;2, so that it is "xed for an assumed mean #ow velocity. Then,

equation (5) gives the following expression for the perturbation pressure:

p"!o
F A

LU
Lt

#;
LU
LxB . (6)

2.1. POTENTIAL OF THE PERTURBATION VELOCITY

The #uid domain is assumed to be an annular cylinder of in"nite extent, delimited at r"R
by a periodically supported shell of in"nite length, and at r"R

1
by a rigid cylinder, so that

it is possible to employ the method of separation of variables to obtain the velocity
potential. Here the mathematical trick is to consider the function w and the #uid domain
de"ned for any x3(!R, R). This means that w is a periodic function with main period
2¸, and the same is veri"ed for the velocity potential and the perturbation pressure. This
type of solution was initially introduced by Niordson (1953) and then used by PamKdoussis
& Denise (1972) for shells with incompressible #ow, either internal or external. The physical
interpretation of this solution is that the shell studied is inserted in an in"nitely long pipe
periodically supported, where the distance between two consecutive supports is the length
¸ of the shell. Only antisymmetric modes with respect to these supports (x"0, ¸) are
considered because they are those with the lowest frequencies.

Similar to Part I of the present study (Amabili & Garziera 2000), the symmetric modes
(in a cross-section) with respect to h"0 are expanded as
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wH
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j/1

a
nmj G

A
nmj

cos(nh) cos(mnx/¸)

B
nmj

sin(nh) sin(mnx/¸)

cos(nh) sin(mnx/¸) H eKt, (7)

where a
nmj

are the unknown coe$cients involved in the mode expansion, A
nmj

and B
nmj

are
the mode shape coe$cients, and n, m and j indicate the number of circumferential waves, the
number of axial half-waves and the mode number, respectively. In equation (7), the
imaginary part of K is the circular frequency of oscillation of the shell and its real part gives
an exponential growth or decay, and t is the time. The antisymmetric modes with respect to
h"0 are expanded as
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If there is no cavitation at the #uid}shell interface, the boundary condition expressing the
contact between the shell wall and the #ow is

A
LU
LrB

r/R

"A
Lw

Lt
#;

Lw

LxB . (9)

Similarly, at the #uid/rigid-cylinder interface

A
LU
LrB

r/R1

"0. (10)

Boundary condition (10) excludes the dynamic interaction between the shell being studied
and the external cylinder. In order to investigate the dynamic interaction between two
#exible shells, equation (10) must be replaced with an expression of the type of equation (9).

The radial shell displacement w has the generic form w"A (t) sin(mnx/¸) cos(nh), as
shown by equations (7) and (8). By using the method of separation of variables, U has the
form

U (x, r, h, t)"t(r) cos(nh) e*axeKt, (11)

where a"mn/¸ is a function of m, and i is the imaginary unit. Substituting equation
(11) into equation (3), it is found that

t(r)"C
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(mnr/¸), (12)

where C
1

and C
2

are appropriate coe$cients. In equation (12), I
n
and K

n
are the modi"ed

Bessel functions of order n of the "rst and the second kind, respectively. Equations (9) and
(10) are satis"ed by having U of the form
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In order to simplify this notation, the ratio F
nm

is introduced,
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In particular, for symmetric modes as given in equation (7), U takes the following form:
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=
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+
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3
+
j/1

a
nmj

cos(nh) (¸/(mn)) F
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(15)

The expression of U for antisymmetric modes is immediately obtained from equation (15).
For #ow inside the shell (R

1
P0), equation (14) simpli"es to

F
nm
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(mnr/¸)
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(mnR/¸)

. (16)

2.2. ENERGY ASSOCIATED WITH THE PERTURBATION POTENTIAL

Only the e!ect of the mean #ow potential does not give any time-varying contribution in
the evaluation of the #ow energy, as shown in Appendix A. The energy E

F
associated with

the perturbation potential, by using the Green theorem, is given by
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where the negative sign must be chosen for an internal #ow (with respect to the shell) and
the positive sign for an external #ow. In fact, the global contribution to the energy of the
integration of U (LU/Lr) over the two surfaces at x"0 and ¸ is zero. By using equation (9),
equation (17) is transformed into the following expression:
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The energy E
F

can conveniently be divided into three terms having di!erent dependencies
on the exponent K:
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The reference kinetic energy ¹H
F

of the #uid associated with the perturbation potential,
similarly to equation (26) in Part I, is given by
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In equation (20), the negative sign must be taken for an external #ow. The reference kinetic
energy of the #uid associated with the mean #ow is not included in the shell equations of
motion; therefore, it is not considered here. The maximum potential energy <

F
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where the negative sign is associated with an internal #ow. Equation (21) shows that <
F

is
negative for both internal and external #ows, i.e., the sti!ness of the system decreases with
;. This explains the shell instability at high #ow velocities.

The maximum gyroscopic energy E
G

associated with the perturbation potential is

E
G
"G

1

2
o
F

R n; G2
=
+

m,i/1

3
+

j, jI/1

a
0mj

a
0ijI P

L

0

[(m/i) F
0i

(R) sin(inx/¸) cos(mnx/¸)

#F
0m

(R) sin(inx/¸) cos(mnx/¸)] dx

#

=
+
n/1

=
+

m,i/1

3
+

j, jI/1

(a
nmj

#b
nmj

) (a
nijI
#b

nijI
) P

L

0

[(m/i)F
ni
(R) sin(inx/¸) cos(mnx/¸)

#F
nm

(R) sin(inx/¸) cos(mnx/¸)] dxH , (22)

where the negative sign is associated to an internal #ow. Equation (22) can easily be
transformed into
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where

a
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0 if m"i,

0 if both m and i are even or odd,
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One can immediately verify that E
G

is globally zero as a consequence of the fact that
(m/i)a

im
"!a

mi
. This proves that the system is conservative and that no energy is dissi-

pated. It is to be noted that equation (23) expresses a coupling between modes that is
characteristic of gyroscopic systems. Thus, equation (23) will be used in Section 5 to
evaluate the gyroscopic matrix C.

3. EFFECT OF THE PRESSURE AND THE INITIAL PRE-STRESS

The substitution of the mode expansion, equation (7), into the operator obtained by using
the FluK gge theory of shells (Leissa 1973) gives the following matrix:
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, (24)

where j"mnR/¸, and there are two di!erent signs for some elements; the sign above is
chosen for symmetric modes with respect to h"0 and the one below for antisymmetric
modes. The additional matrix, according to the FluK gge theory for taking into account initial
pre-stress of the shell is (Leissa 1973)
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where c"Eh/(1!v2); N
x
, Nh and N

xh are the membrane uniform forces per unit length, in
the axial, circumferential and tangential directions, respectively. These membrane forces can
have di!erent physical origins. In the case of a uniform radial pressure PM , assumed positive
outwards, the circumferential force per unit length is Nh"RP1 and N

x
"0 for a simply

supported shell. For shells axially constrained, N
x
O0 in the case of a uniform radial

pressure; in particular, N
x
"vRPM for u"0 at x"0, ¸. The case of axial elastic constraints

is investigated in Appendix B.
In the case of a viscous #ow, the steady viscous e!ect gives an almost constant axial force

per unit area p
x
; this gives a membrane force per unit length N

x
"p

x
(1
2
¸!x). This linearly

varying membrane force cannot be studied with equation (25) but requires a di!erent
operator; this problem will be investigated in Part III of the present study.

The frequency equation of the shell with pre-stress is obtained by

det[LF#LP]"0, (26)

which has three roots X
nmj

for any given values of n and m; these roots, corresponding to
j"1, 2, 3, have modes with prevalent radial, longitudinal and circumferential displace-
ments, respectively. These values are the same for symmetric and antisymmetric modes with
respect to h"0. In equation (24), X

nmj
is the frequency parameter, de"ned by

X2
nmj

"u2
nmj

R2o
S
(1!l2)/E, (27)

where u
nmj

is the corresponding circular frequency, o
S
is the shell mass density, E is Young's

modulus, and l is the Poisson ratio. The mode shape coe$cients A
nmj

and B
nmj

are obtained
as eigenvectors of equation (26), after normalization to one of the third element of each
eigenvector. Only a change in sign is found in the mode shape coe$cients of symmetric and
antisymmetric modes.

4. NONSYMMETRIC CONSTRAINTS

The elastic constraints at the shell edges have been considered in Part I of the present study.
In this section, the extension to the case of di!erent constraints at x"0 and ¸ is considered.
The maximum potential energy <

kI
stored by the elastic distributed springs, which simulate

the #exible axial translational constraint at x"0, ¸, is given by
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In equation (28), kI
0
(h) and kI

L
(h) are the nonuniform spring sti!nesses (N/m2) at x"0 and

¸, respectively. For simplicity, kI
0
(h) and kI

L
(h) are assumed to be symmetric with respect to

h"0, and it can be expanded into the following cosine series:
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For symmetric modes, substitution of equations (7) and (29) into equation (28) gives
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where t
nsk

is de"ned in Part I. The extension for antisymmetric modes and rotational
constraints is analogous.
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5. EIGENVALUE PROBLEM

Only a "nite number of modes in the Rayleigh}Ritz expansion is retained. The three-
dimensional matrix q of the Ritz coe$cients is introduced as

q
nmj

"G
a
nmj

for symmetric modes, n"0,2,N!1; m"1,2, NI , j"1, 2, 3,

b
nmj

for antisymmetric modes, n"1,
2

, N; m"1,
2

,NI , j"1, 2, 3.
(31)

In equation (31), the expansion of symmetric and antisymmetric modes involves 3]N]NI
terms; N and NI must be chosen large enough to give the required accuracy.

The reference kinetic energy of the #uid associated with to the perturbation potential,
equation (20), can be written as
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The maximum potential energy of the #uid is
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The energy transferred among modes, associated with the gyroscopic e!ect, is
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where the matrix C
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is given by
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The sti!ness matrices associated with the translational and rotational springs given in
Part I can easily be modi"ed to take into account di!erent edge constraints, as discussed in
Section 4. The e!ect of pressure and initial pre-stress is taken into account by the potential
energy of the shell, as presented in Part I, inserting the natural circular frequency u

nmj
,

obtained by equation (26). In equations (33), (35) and (37) the positive sign must be taken for
an internal #ow and the negative one for an external #ow.

The equation of motion of the system can be written in the following vectorial form:

MxK#Cx5 #Kx"0, (38)

where

M"o
S
h(¸/2) MS#o

F
(¸/2)MF#(M/R) MM , (39)

K"o
S
h (¸/2)KS!o

F
(¸/2)n;2KF#KkI#Kc#KB , (40)
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-Strictly, K and hence X are eigenvalues, but are here referred to as eigenfrequencies.

C"!o
F

n;CF , (41)

x(t)"eKt q. (42)

Matrices M
S
, M

M
, K

S
, KkI , Kc

and K
B

are de"ned in Part I. Equation (38) is solved in state
space, and gives the following eigenvalue problem:

K G
q

KqH"C
0 I

!M~1K !M~1CD G
q

KqH . (43)

In equation (43), Mq, KqNT is the state vector. It must be observed that the eigenvalue K is
generally complex. In the present case, it has been shown at the end of Section 2 that the
system is conservative. Therefore, before the onset of instability, the eigenvalues have a zero
real part. In general, eigenvectors q have both real and imaginary parts di!erent from zero;
therefore, modes are complex. The only exception is for zero #ow velocity ;.

6. NUMERICAL IMPLEMENTATION

The solution of the problem is obtained with a self-made code written in C language. The
matrices with six indices given in Section 5 are transformed into matrices with two indices
(plane matrices); this transformation is explained in Part I of the present study. A routine to
"nd the complex eigenvalues and eigenvectors of the generic matrix has been used. In
particular, it is a modi"ed version of the Eispack rg &&real general'' routine.

7. NUMERICAL RESULTS

Numerical results are obtained for shells containing #owing water (i) to validate the method
and the computer code; (ii) to investigate the e!ect of di!erent boundary conditions at the
shell ends, including the solution of the paradox of HoraH c\ ek and Zolotarev (1984); (iii) to
study riveted shells; (iv) to investigate the e!ect of the static pressure. Moreover, shells in
external water #ow and in annular air #ow have also been analysed.

7.1. VALIDATION OF THE METHOD

A study has been performed for a case already studied in the literature, in order to make
comparisons. The case analysed here was studied analytically by (i) Weaver & Unny (1973)
by considering rigid extensions to the shell being studied, (ii) Amabili et al. (1999) consider-
ing both rigid and #exible extensions and (iii) Selmane & Lakis (1997a) considering #exible
extensions only. It is a circular cylindrical shell, simply supported at the ends, containing
#owing water and having the following characteristics: ¸/R"2, h/R"0)01, E"206]
109 Pa, o"7850 kg/m3, o

F
"1000 kg/m3 and l"0)3. A nondimensional #uid velocity< is

introduced for convenience, de"ned as in Weaver & Unny (1973) by <";/M(n2/¸)
[D/(oh)]1@2N, with D"E h3/[12(1!l2)]; similary, a nondimensional, generally complex,
eigenfrequency X is de"ned as X"K/M(n2/¸2)[D/(oh)]1@2N, K being the corresponding
complex radian eigenfrequency.-

Figure 2 shows the imaginary and real parts of the nondimensional eigenvalues X versus
the nondimensional #ow velocity for modes having "ve circumferential waves (n"5),
including the fundamental mode (n"5, m"1 for <"0). Results have been obtained by



Figure 2. First three nondimensional eigenvalues X with n"5 circumferential waves for the simply supported
shell conveying water versus the nondimensional #ow velocity. (a) Imaginary part of X (frequency); (b) real part of

X (damping).
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using nine longitudinal modes in the expansion although only the "rst three longitudinal
modes are reported in Figure 2. It is to be noted that many of the results available in the
literature have been obtained while retaining only two or three longitudinal modes in the
expansion. These results are in good agreement with those reported by Amabili et al. (1999),
for the case of #exible extensions that were obtained by using only two longitudinal modes;
therefore, the agreement for the "rst mode is much better than that for the second mode.
Results are close to those obtained for a shell with rigid extensions given in Amabili et al.
(1999) and Weaver & Unny (1973), as already discussed by Amabili et al. (1999).

In Figure 2(a), the curves give the nondimensional frequency (imaginary part of X) of the
shell versus the nondimensional #uid velocity <. Eigenfrequencies generally decrease with
<. The lowest curve corresponds to the mode with one longitudinal wave (m"1) for<"0;
the second curve to m"2 and the third one to m"3, for<"0. The mode shape is changed
by the #ow, and the "rst mode can present two longitudinal waves for large #ow velocities.
Mode shapes at #ow velocity <"1 are shown in Figure 3. It is clear that the modes are
complex; in particular, in Figure 3(a) the real part of the eigenvalue has a longitudinal
half-wave (see shapes at t"¹/8, ¹/4 and 3¹/8, where ¹ is the time period) and the
imaginary part has two longitudinal half-waves (see shape at t"0 and ¹/2).
Figure 3. Radial mode shapes (in a radial section) with n"5 circumferential waves for #ow velocity <"1 at
"ve di!erent instants t"0 (1), ¹/8 (2), ¹/4 (3), 3¹/8 (4), ¹/2 (5), where ¹ is the time period; simply supported shell.

(a) First mode; (b) second mode.
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Figure 2(b) gives the real part of the nondimensional eigenfrequency, proportional to
damping; when Re(X)'0, the system is unstable, whereas Re(X)(0 indicates that the
system is stable. The point where the lowest curve in Figure 2(a) reaches zero frequency,
corresponds to the static divergence of the system (<"3)33). The intersection of the second
curve with zero frequency gives the point of restabilization of the system (<"4)34). Then,
the merging of the "rst- and second-mode loci corresponds to the onset of coupled-mode
#utter, represented by the branch coming out from the curve corresponding to the second
mode. It should be emphasized here that, strictly, the existence of coupled-mode #utter
cannot be decided by a linear theory (it is a post-divergence behaviour of the shell involving
large deformations) and was not predicted by Amabili et al. (1999) by using a nonlinear
approach. In particular, that study has shown for the "rst time that the stability (divergence)
limit predicted by using a linear theory can be largely nonconservative.

Figure 4 shows di!erences between data reported in Figure 2(a) and imaginary X
(nondimensional frequency) computed with only three longitudinal modes in the expansion.
The nondimensional eigenfrequency of the "rst mode is almost perfectly evaluated with
three longitudinal modes in the expansion; small di!erences arise for the second mode.
However, the frequency of the third mode cannot be accurately evaluated by using only
three modes in the expansion, except for small #ow velocities. In any case, the intersections
of the curves with the abscissa axis are not changed by the number of longitudinal modes in
the expansion.

Nondimensional eigenfrequencies of the "rst longitudinal mode for di!erent numbers n of
circumferential waves are given in Figure 5. It is clear that n"5 is the fundamental mode
for all the #ow velocities before divergence of the shell.

7.2. EFFECT OF THE BOUNDARY CONDITIONS

The same shell investigated in Section 7.1 is analysed here for di!erent boundary conditions
at the shell ends. Figure 6 shows the imaginary and real parts of the eigenvalues X of
a clamped shell at both x"0, ¸ versus the nondimensional #ow velocity for modes with
n"6, including the fundamental mode (n"6, m"1 for <"0). The results have been
Figure 4. Comparison of the "rst three nondimensional eigenfrequencies evaluated with nine longitudinal
modes (see Figure 2 where the same symbols are used) and three longitudinal modes (di!erent symbols); n"5,

simply supported shell.



Figure 5. Nondimensional eigenfrequencies of the "rst longitudinal mode for di!erent number n of circumferen-
tial waves versus the nondimensional #ow velocity; simply supported shell conveying water: *, n"5; ], n"4; h) ,

n"6; j, n"7; #, n"3.

Figure 6. First three nondimensional eigenvalues X with n"6 for clamped shell conveying water versus the
nondimensional #ow velocity. (a) Imaginary part of X (frequency); (b) real part of X (damping).
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obtained by using nine longitudinal modes in the expansion. Figure 6(a) shows that non-
dimensional eigenfrequencies (imaginary X) are larger for the clamped shell with respect to
the simply supported shell for any <, as expected. Eigenfrequencies of the "rst longitudinal
mode for di!erent values of n are given in Figure 7. Mode n"6 is the fundamental mode for
all the #ow velocities before divergence of the shell, but has a frequency very close to the one
of mode n"5 for small #ow velocity and to the one of mode n"4 for large velocity. The
crossing of curves corresponding to modes n"4 and 5 is quite interesting.

Eigenvalues of the same shell clamped at the upstream end and simply supported
downstream are shown in Figure 8, including the fundamental mode (n"5, m"1 for
<"0). Figure 8(b) shows that the system is conservative before the onset of instability
(divergence), contradicting what was found by HoraH c\ ek & Zolotarev (1984). The original
result of HoraH c\ ek & Zolotarev (1984) is probably due to some kind of numerical error in the
eigenvalue evaluation. Eigenfrequencies and the critical velocity for this case are comprised
between those of simply supported and those of clamped shells, as expected. Similarly,



Figure 7. Nondimensional eigenfrequencies of the "rst longitudinal mode for di!erent number n of circumferen-
tial waves versus the nondimensional #ow velocity; clamped shell conveying water: *, n"6; ], n"5; h, n"4; #,

n"7.

Figure 8. First three nondimensional eigenvalues X with n"5 for clamped (upstream) } simply supported
(downstream) shell conveying water versus the nondimensional #ow velocity. (a) Imaginary part of X (frequency);

(b) real part of X (damping).
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Figure 9 gives the eigenvalues for the same shell simply supported at the upstream end and
clamped downstream, i.e., with reversed boundary conditions; the results are almost
coincident with those obtained in Figure 8.

7.3. RIVETED SHELLS

The same shell investigated in Sections 7.1 and 7.2 is analysed here for nonuniform
boundary conditions around the shell ends, as in the case of a riveted shell (see Part I of the
present study). Figure 10 gives the nondimensional eigenfrequencies of symmetric and
antisymmetric modes for a shell with four equispaced, almost clamped arcs, and simulating
rivets, of angular amplitude of 3)63 at each shell end. These arcs are symmetrically
distributed with respect to the origin (h"0) and away from this point; both the slope in the
axial direction and the axial displacements are restrained at the rivet location by using



Figure 9. First three nondimensional eigenvalues X with n"5 for simply supported (upstream) } clamped
(downstream) shell conveying water versus the nondimensional #ow velocity. (a) Imaginary part of X (frequency);

(b) real part of X (damping).

Figure 10. First three nondimensional frequencies for the shell with four rivets conveying water versus the
nondimensional #ow velocity. (a) Symmetric modes; (b) antisymmetric modes.
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springs of very high translational sti!ness kI "109 N/m2 and rotational sti!ness c"108 N.
Outside these clamped arcs the shell is simply supported. Results have been calculated by
using an expansion with eight longitudinal and 19 circumferential modes (therefore the
dimension of the vector of Ritz coe$cients is 8]19]3).

Complex mode shapes are shown in Figure 11 at a speci"c time instant (t"¹/4, where
¹ is the vibration period) for<"1. Dots in Figure 11(a) indicate the location of rivets. The
fundamental mode is the symmetric mode with "ve nodal diameters. It has a frequency
slightly smaller than that of the "rst antisymmetric mode that also has "ve nodal diameters.
The fundamental mode of the simply supported shell also has "ve nodal diameters, as
shown in Figure 5. However, the third mode is antisymmetric with four nodal diameters,
where the nodes are placed in correspondence to the clamped arcs. For this reason, this
mode has only a very small change in frequency with respect to Figure 5.

Results for a shell containing #ow with nonuniform boundary conditions around the
edges have never been obtained before the present study.



Figure 11. Radial mode shapes for #ow velocity <"1 at instant t"¹/8, where ¹ is the time period; shell with
four rivets. (a) "rst symmetric mode, X"1)33; dots indicate the location of rivets; (b) second symmetric mode,
X "1)51; (c) third symmetric mode, X"1)54; (d) "rst antisymmetric mode, X"1)35; (e) second antisymmetric

mode, X"1)46; (f ) third antisymmetric mode, X"1)58.

Figure 12. First three nondimensional eigenfrequencies with n"5 for simply supported shell in axial un-
bounded water #ow versus the nondimensional #ow velocity.

46 M. AMABILI AND R. GARZIERA
7.4. SHELL IN AN EXTERNAL FLOW

The same shell studied in Section 7.1 is immersed in an unbounded axial #ow of water. The
shell is assumed to be simply supported at the ends. Figure 12 gives the nondimensional
eigenfrequencies (imaginary part of X) versus the #ow velocity; only small di!erences arise
with respect to Figure 2(a). In fact, internal and external #ows have almost the same e!ect
on the shell considered; the e!ect of external water is only a little smaller than that of
internal #ow in this case.



Figure 13. Eigenfrequency of the fundamental mode (n"5) of the simply supported shell in axial unbounded
water #ow versus the static pressure and #ow velocity; negative pressure is external.
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7.5. EFFECT OF STATIC PRESSURE

The e!ect of an external pressure on the frequency of the fundamental mode (n"5, m"1
for <"0) of the simply supported shell with an external #ow studied in Section 7.4 is
shown in Figure 13. Here, dimensional data are given and the shell radius is assumed to be
R"0)5 m. Variations of both pressure and #ow velocity are analysed. The full range of
possible pressures before shell buckling is considered. External pressure (negative value of
PM ) has the e!ect of decreasing the eigenfrequencies of the shell and of destabilizing it for all
the range of #ow velocities.

7.6. SHELL IN AN ANNULAR FLOW

Numerical results were obtained for a case already theoretically and experimentally studied
by El Chebair et al. (1989). It is a clamped}clamped circular cylindrical shell made of rubber,
in annular incompressible air #ow, having the following characteristics: R"0)0247 m,
¸/R"5)5, h/R"0)05, R

1
/R"1)25, E"2)43]106 Pa, o"1220 kg/m3, o

F
"1)25 kg/m3

and l"0)47. The static pressure inside and outside the shell was equal during the
experiments, so that PM "0 has been taken.

Eigenfrequencies of the "rst longitudinal mode for di!erent values of n are given in
Figure 14 versus the #ow velocity (m/s). The fundamental mode is associated with n"2 for
all the #ow velocity range. The second mode is associated with n"3.

Eigenfrequencies of the "rst six longitudinal modes with n"3, which is associated with
the lowest #ow velocity for instability according to experiments (where important nonlinear
e!ects have been observed), are reported in Figure 15. When increasing the #ow velocity, the
mode shapes are changed from the classical ones of simply supported shells. As previously
discussed, complex mode shapes arise. For small #ow velocities, the real part of the mode,
which has the same shape of the natural mode of the shell for zero #ow, is predominant. For
large #ow velocities, the imaginary part, which usually has the shape of two longitudinal
half-waves for the "rst mode, becomes predominant. In particular, for the "rst mode this



Figure 14. Eigenfrequencies of the "rst longitudinal modes for di!erent number n of circumferential waves for
clamped rubber shell in annular #ow versus the air velocity: ], n"2; *, n"3; #, n"1; h) , n"4.

Figure 15. First six eigenfrequencies with n"3 for clamped rubber shell in annular #ow versus the air velocity.
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change in shape arises for ;K60 m/s. The system loses stability by divergence for a #ow
velocity around 80 m/s. Beyond this point, the system remains unstable; no restabilization is
observed. The experimental results of El Chebair et al. (1989) are in good agreement with
the linear, theoretical results at zero #ow velocity. However, experiments show violent
divergence at 49 m/s, i.e., much before the value predicted; moreover, the shape of the
buckled shell at 49 m/s presents one axial half-wave (n"3; m"1), very large deformation
and contraction of the circumference in a cross-section of the shell. Even if the e!ect of
viscosity is included in the model (El Chebair et al. 1989), the theoretical predictions are
signi"cantly larger than the experimental results. In fact, as discussed by Amabili et al.
(1999), the shell stability must be predicted by using a nonlinear theory to model shell
dynamics; however, the eigenfrequencies can be predicted by using the present linear
approach.
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8. CONCLUSIONS

The present method has a large #exibility and allows the study of many complicating e!ects
on the linear dynamics of shells with #owing #uid and nonuniform boundary conditions
with a simple addition of an energy term associated with the single complication. This
modularity of the method has given the possibility to develop the computer code DIVA,
speci"cally dedicated to circular cylindrical shells. Internal, annular and external #ows can
be studied and the e!ects of static pressure, added masses, elastic bed and elastic constraints
can be analysed.

Eigenfrequencies of shells coupled to an internal or an external #ow generally decrease
monotonically with the #ow speed <. Initially, the frequency is very scarcely sensible to an
increment of the #ow speed; on approaching shell instability (divergence obtained for zero
frequency) the frequencies decrease very rapidly by increasing <. Moreover, the vibration
modes of the shell coupled to #ow are complex. In particular, the fundamental mode has
a real part having a predominant longitudinal half-wave, which is the natural mode for zero
#ow, and an imaginary part with predominant two half-wave terms. This complex mode is
travelling along the shell length with the #ow.

The study has also mathematically proved that shells with zero displacement at the shell
ends and any additional internal or boundary constraint are conservative for any #ow
velocity before divergence of the system. The proof has been given for the #uid}structure
interaction model obtained by separation of variables, corresponding to a #exible extension
(of in"nite length), periodically supported, of the shell. An extension of the method to shells
with rigid ba%es can easily be made.
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APPENDIX A: CONTRIBUTION OF THE MEAN FLOW TO THE ENERGY
OF THE FLOW

When the mean #ow is considered in the evaluation of the total #ow energy, the following
equation must be considered:

E
TF

"G

1

2
o
F PX

(WLW/Ln)DX dX, (A1)

where X is the boundary surface of the #uid volume of length ¸, delimited by the shell
surface and n is a coordinate along the normal to the boundary, taken positive outwards.
For simplicity, let us consider the case of internal #ow. The cases of annular and external
#ow can be studied similarly. In this appendix, it will be proved that equation (A1)
can be reduced to equation (17) plus a constant term in time, which gives no contri-
bution to the Rayleigh quotient and natural frequencies of the shell. Equation (A1) for
internal #ow, integrated over the shell internal surface and on the circular surfaces at x"0,
¸ gives
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In equation (A2), LW/Lr"LU/Lr, LW/Lx";#LU/Lx, W D
x/L

";¸#U and W D
x/0

"U.
Equation (A2) is therefore reduced to
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The two integrals in equation (A3) give zero for nO0 as a consequence of the fact that the
result of integration between 0 and 2n of cos(nh) is zero (see equation (11) for the expression
of U). For n"0 it is necessary to substitute ¸ by 2¸, which is the longitudinal period of
motion, and the two integrals vanish. In fact, in Section 2.1, w was assumed to be a periodic
function with main period 2¸ in order to obtain a separation of variables for U. As
anticipated, the mean #ow potential;x gives no contribution to the evaluation of the #ow
energy, excluding a constant term, which does not a!ect the natural frequencies of the shell.
In conclusion, the #ow energy evaluated in Section 2.1 is completely justi"ed.

APPENDIX B: AXIAL PRE-STRESS FOR PRESSURIZED SHELL WITH
ELASTIC AXIAL CONSTRAINT

In the axial direction, the shell and the elastic constraints can be considered as three springs
in series. The sti!ness of the elastic constraint at x"0 is

k
1
"P

2n

0

kI
0
(h) R dh"2nRkI

0,0
. (B1)

Similarly, the sti!ness of the elastic constraint at x"¸ is

k
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L
(h) R dh"2nRkI

L,0
. (B2)

The axial sti!ness of the shell is

k
S
"2n RhE/¸. (B3)

The global sti!ness of the system is
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The membrane axial force per unit length is

N
x
"(k

eq
/k

S
) lRPM . (B5)

Equation (B5) gives a constant value for N
x
; this value is exact in the case of uniform

constraints around the edge, and it is an approximation, away form the edges, in the case of
nonuniform constraints.
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